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• Project start date: 01 Feb 2021

• Project end date: 31 Jan 2023

• Percent complete: 60.0%

• Barriers addressed
– Data quality: we applied pre-filtering 

algorithm to improve the data for the 
modeling using neural networks 

– Large model parameters: We developed 
hybrid neural network to reduce model 
parameters 

– Real-time implementation

• Total project funding: $2M

– DOE share: $2M

– Contractor share: 0

• Funding for FY 2021: $257k

• Funding for FY 2022: $1150k

• Funding for FY 2023: $593k

Timeline

Budget

Barriers and Technical Targets

• Interactions/collaborations: University 
of Hawaii, Econolite Systems, Hawaii 
DOT 

• Project lead: ORNL

Partners

Overview
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1. Relevance  
Impact: 

• Since traffic systems are dynamic, nonlinear and stochastic, this project will develop AI-based 

modeling and controls for the first-time on 24/7 real-world implementation. 

• Address the effects of future mobility technologies and services on VTO’s research portfolio – and 
thus significantly expend the DOE landscape for real-world implementation of AI for Mobility. 

• Use data sources and facilities built via the recent investment from the Hawaii DOT to its busiest 
arterial for improved traffic system monitoring and operation. 

Objective:
• Develop and apply AI based 

modeling and control for 

Optimized Mobility for the Nimitz 

Highway and Ala Moana 

Boulevard Arterial in Honolulu

• Operate the AI based modeling 

and control 24/7 as a real-time 

implementation to see the 

benefit of advanced signal 

controls

Figure 1. The closed loop system structure and tasks
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2. Tasks and Milestones (Project duration on 02/01/2021 -
01/31/2023)    Milestone Description When Status

AI-based 

modeling

Complete AI-based modeling for the Nimitz Highway and Ala Moana 

Boulevard arterial in Honolulu with a <10% modeling error and a 95% 

confidence interval. . 

Month 5

Completed 

AI-based 

control

AI-based control strategy completed with a <5% closed-loop control error, 

15% energy savings, and 25% reduced travel delays for simulated 

scenarios.

Go/no-go: Successful completion of AI-based modeling and control 

design in month 12

Month 12

Completed (to 

further improve 

energy 

modeling)

Integrating

with the 

Econolite

system        

Complete the integration and testing of AI-based modeling and control on 

the Econolite control system platform together with all the software and 

hardware interface for real-time implementation. 

Month 19 In progress

Real-world 

testing

Complete the implementation of the AI-based control for the Nimitz 

Highway and Ala Moana Boulevard arterial in Honolulu with at least 15% 

energy savings and 25% of travel delay reduction compared with the 

baseline case of Econolite controls. Submit a paper to a leading 

transportation journal. 

Month 24 In progress
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3. What have been achieved    

April 28, 2022 5

❑ Competed two milestones (Modeling, VISSIM and Optimal AI-based Control) as 
planned with            

a) modeling error < 10% at 96% confidence, 
b) control improvement > 30% travel delay reduction, fuel 

reduction 10% (preliminary result)

❑ Presented a keynote speech at 2021 Vehicular Conference;

❑ Received the best paper award at 2021 Vehicular Conference;

❑ A poster in TRB in 2022;

❑ A journal paper titled "Hybrid Neural Network Learning for Multiple Intersections along 

Signalized Arterials - A Microscopic Simulation vs Real System Effect“ per invited by 

International Journal On Advances in Networks and Services, v 14 n 1&2 2021;

❑ A journal paper at the prestigious IEEE Transactions on Intelligent Transportation 

Systems (minor revision) titled "Hybrid Recurrent Neural Network Modeling for Traffic 

Delay Prediction at Signalized Intersections Along an Urban Arterial,"
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4. Approach

Table 1. Available data from the new communication and data 
platform in the following table 

April 28, 2022 6

Data 1: All the signal control status parameters along

arterials

Data 2: CCTV-based video detection (volumes, occupancy,

queue length, etc.)

Data 3: Arterial performance measurement (arterial travel

time, control delays, number of stops)

Data 4: V2X communication and customized connected

vehicle trajectories

Data 5: Real-time advanced traveler information system

.
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Red clearance on, phase 1

Detector off, Detector id 37

timestamp
Event 
code

Event 
Param

Detector on, Detector id 37

Green on, phase 2

Green off, phase 5

Yellow on, phase 5

Red clearance off, phase 1

4.1 Date Collection and Processing   
Objective: Obtain High-Resolution Delay Data from Econolite System and Travel Delay 

Calculation

• All events from advanced, stopbar and pulse detectors are extracted as well as 

signal timing of all phases. 

• Queue length of each phase is estimated to calculate delay.

Arrival Pattern 
Estimated From 

Advanced Detectors

Departure Pattern 
Estimated From 
Pulse Detectors

Area underneath is total delay.

               
           

            

Stopbar
Detectors

Advanced 
Detectors

Pulse 
Detectors

Detector Layouts
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4.2 VISSIM Driven Control Design

Honolulu 34 
Intersections

VISSIM Model

Neural Network 
Modeling

NN Controller

Apply u(k) 

𝜋(𝑘)

Real-time
Implementation
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4.2 VISSIM Implementation of Econolite Network

● Adaptive closed loop signal control for corridor #1.

Econolite Network Vissim Network

9
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4.3 Hybrid Neural Network (HNN) Model

• HNN Model
 𝑘 + 1  𝐴 𝑘 + 𝐵𝑢 𝑘 + 𝜔(𝑘) (1)

where  𝑘 and 𝑢(𝑘) denote average delay per vehicle and green time for multiple intersections at
time index 𝑘. 𝜔(𝑘) is noise. {A, B} are the weight matrix. Rewrite (1) to (2):

 𝑘 + 1  𝐴 𝑘 + 𝐵𝑢 𝑘 +   𝑘 , 𝑢 𝑘 − 1 ,  (𝑘 ) (2)

Let NN to approximate   𝑘 , 𝑢 𝑘 − 1 ,  𝑘 by መ  𝑘 , 𝑢 𝑘 − 1 ,  𝑘 , 𝜋 ,  (𝑘) denote traffic volume.

This is Achieved by minimizing Eq.(3) using gradient approach.

Min 𝐽  
1

2
( ො 𝑘 + 1 −  𝑘 + 1 )2 (3)

ො 𝑘 + 1 = A 𝑘 + 𝐵𝑢 𝑘 + መ  𝑘 , 𝑢 𝑘 − 1 ,  𝑘 , 𝜋 (4)

{A, B, 𝜋} are parameters to be trained. 𝜋 groups all NN weights and bias.

Linear NN

HNN

Objective

Linear model

New feature: traffic volume
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4.3 Hybrid NN model – Online Training Using Econolite Data

• Model parameters {A, B, 𝜋} are trained simultaneously by (6)-(11):

መ𝐴 𝑘 + 1  መ𝐴 𝑘 − 𝜆1
𝜕𝐽

𝜕𝐴
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 ) (6)

෠𝐵 𝑘 + 1  ෠𝐵 𝑘 − 𝜆2
𝜕𝐽

𝜕𝐵
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )(7)

ො𝜋 𝑘 + 1  ො𝜋 𝑘 − 𝜆3
𝜕𝐽

𝜕𝜋
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )(8)

where 𝜆1, 𝜆2, 𝜆3 are learning rates.

𝜕𝐽

𝜕𝐴
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )  (ො 𝑘 + 1 −  𝑘 + 1 )

𝜕 ො𝑦

𝜕𝐴
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )  (ො 𝑘 + 1 −  𝑘 + 1 )  𝑘 (9)

𝜕𝐽

𝜕𝐵
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )  (ො 𝑘 + 1 −  𝑘 + 1 )

𝜕 ො𝑦

𝜕𝐵
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )  (ො 𝑘 + 1 −  𝑘 + 1 ) 𝑢 𝑘 (10)

𝜕𝐽

𝜕𝜋
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 )  (ො 𝑘 + 1 −  𝑘 + 1 )

𝜕 መ𝑓

𝜕𝜋
|( መ𝐴 𝑘 , ෠𝐵 𝑘 ,ෝ𝜋 𝑘 ) (11)

where y(k+1) is the measured data.

Parameter update rules
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4.3 Experiment Results: Corridor 4

• Testing: Intersection 26
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4.3 Modeling Summary (34 intersections)

Confidence Interval

(CI)

Training 98.24%

Testing 94.50%

𝐶𝐼  
σ𝑖=1
𝑁 (     𝑖< 0.1)

𝑁

As planned, now we have completed the neural network modeling for all the intersections with average error <10%
Milestone one completed on time.
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4.4 Signal Control Optimization

14

𝑀 𝑛 𝑚 𝑧 |  𝑘 + 1 |2

𝑆. 𝑇: 𝑢𝑚 𝑛 𝑘 ≤ 𝑢 𝑘 ≤ 𝑢𝑚 𝑥 𝑘

 𝑘 + 1  𝐴  𝑘 + 𝐵1𝑢1 𝑘 + 𝐵2(𝐻2)
_1 (𝐶 − 𝐻1𝑢1(𝑘)) + 𝐹( 𝑘 , 𝑢 𝑘 − 1 ,  𝑘 ; 𝜋)

Expanding the terms:

 𝑘 + 1  𝐴  𝑘 + (𝐵1 − 𝐵2(𝐻2)
_1H1) 𝑢1 𝑘 + 𝐵2(𝐻2)

_1 𝐶 + 𝐹( 𝑘 , 𝑢 𝑘 − 1 ,  𝑘 ; 𝜋)

Denote the following measurable NONLINEAR term,

𝐺  𝐴  𝑘 + 𝐵2(𝐻2)
_1 𝐶 + 𝐹( 𝑘 , 𝑢 𝑘 − 1 ,  𝑘 ; 𝜋)

𝑉  (𝐵1 − 𝐵2(𝐻2)
_1H1) 

Finally, we have

 𝑘 + 1  𝐺 + 𝑉𝑢1 𝑘

Problem to be solved
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4.5 Adaptive Signal Control in VISSIM – Coding Structure

Step 0: Estimate A, B and 𝝅 (NN weights) matrices using VISSIM data.

Step 1: Simulate for (k) signal cycles (k=2).

Step 2: Update A, B and 𝝅 matrices
A(k+1)  A(k) − LR ∗ Gradient

B(k+1)  B(k) − LR ∗ Gradient
𝝅(k+1)  𝝅(k) − LR ∗ Gradient

Step 3: Optimize for optimal control 𝑢(𝑘) using the updated matrices A(k+1), B(k+1), and 𝝅(k+1).

Step 4: Update signal timing plan u(k) for the next available cycle and simulate for (k)
signal cycles (k=2).

Step 5: Go to step 2.

15
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4.5 VISSIM Based Closed Loop Adaptive NN Control -
Comparison between Baseline and 3 Different Simulations

16
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4.5 Closed Loop Adaptive Control Considering Queue Length

Conditions:

❑ LB for minor phases = 0 sec
❑ UB for minor phases = 10 sec
❑ LB for major left phases = 10 sec
❑ UB for major left phases = 20 sec
❑ LB for major phases = 120 sec
❑ UB for major phases = 180 sec
❑ Learning Rate = 0.001
❑ Vehicle Volume = 5504/hr

Total delay for phase = (delay per vehicle) x (number of vehicles)

Performance: 

Mean improvement from baseline (Sum of delay 
across all phases) = 34.03% (lr = 0.001)

Mean improvement from baseline (Sum of delay across all phases) = 33.19% (lr = 0.0001)

Mean improvement from baseline (Sum of delay across all phases) = 34.50% (lr = 0.01)

17
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4.5 VISSIM Based Closed Loop Adaptive Control Considering 
Queue Length with 10% Increase in Vehicle Volume Every 5 Cycles

Conditions:

● LB for minor phases = 0 sec

● UB for minor phases = 10 sec

● LB for major left phases = 10 sec

● UB for major left phases = 20 sec

● LB for major phases = 120 sec

● UB for major phases = 180 sec

● Learning Rate = 0.01

● Vehicle volume = 1.1*5504 per hour/5 cycles

Total delay for phase = (delay per vehicle) x (number of vehicles)

Mean improvement from baseline (Sum of delay across all phases) = 48.89% (without adaptive control)

Mean improvement from baseline (Sum of delay across all phases) = 50.74% (with adaptive control)

18
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4.5 VISSIM Based Closed Loop Adaptive Control Considering Queue 
Length with 2x Vehicle Volume after 30 Cycles

Conditions:

• LB for minor phases = 0 sec

• UB for minor phases = 10 sec

• LB for major left phases = 10 sec

• UB for major left phases = 20 sec

• LB for major phases = 120 sec

• UB for major phases = 180 sec

• Learning Rate = 0.001

• Vehicle volume =  2*5504 per hour/30 cycles

Total delay for phase = (delay per vehicle) x (number of vehicles)

Mean improvement from baseline (Sum of delay across all phases) = 43.78% (without adaptive control)

Mean improvement from baseline (Sum of delay across all phases) = 47.05% (with adaptive control)

19
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4.6 Energy Modeling for the First Corridor (9 intersections) 

Tasks completed:

● Used the data available (VISSIM trajectories data) to estimate the energy and

formulate the energy calculation;

● Built up initial neural network models between the energy and the signal timing plans, the

following have been considered:

1) Inputs: Time plans u(t) for the period between the starting time  0 and the ending 
time  𝑓 of vehicles passing through the first corridor

2) Output: Energy consumed at the end of corridor, i.e.,

𝐸  𝑓  ෍

𝑖=1

𝑁

{න
𝑡0

𝑡𝑓

𝑃 𝑤  𝑖 𝑢    }

Fuel consumption or number of stops would indicate energy 𝐸  𝑓 .

Note: This is a batch inputs and single valued output modeling.
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4.6 Energy Modeling - Mean and Variance Approach (Only Corridor 1#)

This requires us to use the follow data base to obtain the model for N = 30 (60 hours of run)   

Signal time                      Energy

Mean Variance Energy

𝑢𝑀 1 ∈ 𝑅43 𝑢𝑉(1) ∈ 𝑅
43 𝐸( 𝑓, 1)

𝑢𝑀(2) 𝑢𝑉(2) 𝐸( 𝑓, 2)

… … …

𝑢𝑀(𝑁) 𝑢𝑉(𝑁) 𝐸( 𝑓, 𝑁)

This will allow us to build up the following model

𝐸  𝑓,    (𝑢𝑀  , 𝑢𝑉  ), NN size will be 86 inputs and 1 output

where  (… ) is the unknown nonlinear function to be learned by neural networks

Neural Network Modeling



2222

4.6 Summary of Results for 2X Volume Change after 30 Cycles

Scenario Name Direction
VT-Micro Fuel 

Economy (mpg)
Improvement 

(%)

Baseline EB 18.81 -

Optimal Control EB 20.18 7.27%

Baseline WB 20.34 -

Optimal Control WB 22.22 9.22%

𝐹𝑢  _𝐶 𝑛𝑠𝑢𝑚𝑝   𝑛  න
0

𝑇

exp(෍

𝑖=0

3

෍

𝑗=0

3

𝐾𝑖𝑗 (3.6 𝑡)
𝑖(3.6 𝑡)

𝑗)   

Delay Improvement: 37%
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5. Collaborations and Coordination with Other Institutions 

The project team is composed of ORNL, University of Hawaii, Econolite Systems and Hawaii DOT, 
where ORNL team lead the project and will work on AI-modeling, control design and leads 24/7 real-
time implementation. 

The collaborative activities are as follows:

• University of Hawaii (Professor Guohui Zhang and Dr Arun Bala Subramaniyan):

– Data processing

– Neural network modeling and VISSIM simulation

• Econolite Systems (Dr Jon Ringler and Nick Ullman):

– Data collection and processing     

– Real-time modeling and control interface

– Probability density function shaping for modeling error

• Hawaii DOT (Edwin H Sniffen):    

– Facilitates 24/7 implementation       

– Provides 10+ vehicles with onboard units to real-time testing

ORNL Team Members:

Dr Chieh (Ross) Wang
Dr Wan Li
Dr Yunli Shao
Dr Tim Laclair
Dr David Smith
Dr Jacky Rios-Torres
Dr Yaosuo Xue
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6. Remaining Challenges and Barriers    

Most studies on AI for intersectional signal control only consider a few intersections, and no real-time
learning system has been deployed for large-scale field testing because of the lack of comprehensive
real-time data and user-friendly interfaces to the implementation. These shortcomings have limited the
current research on AI for mobility at the simulation level.

Moreover, energy efficiency has not been well addressed for these AI-based modeling and controls. This
constitutes the following challenges and technical barriers:

▪ Although the theory of AI-based modeling and control for signal control is maturing, the field testing and
closed-loop control implementation for large number of intersections is still limited because of the
insufficient real-time data for fast feedback control realization;

▪ The existing AI-based modeling for transportation systems cannot yet capture the nonlinear and
dynamic stochastic nature with high reliability and robustness; and

▪ Guaranteed control performance for the energy minimization is still lacking.

The project therefore focuses on the development and implementation of real-time learning and
adaptation for the signal control along the arterial, where both NN modeling and control will be adaptively
learned during the real-time system operations.
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7. Planned Future Research

• Further Data Processing

– Collect more data to train HNN

– Include signal phases for both major and minor streets

– Include more features, e.g., traffic volume.

• Continued Neural Network Modeling

– Complete HNN modeling for all the 34 intersections

– Use Different NN structures, e.g., RNN, LSTM.

– Use different sample intervals, e.g., every 2-4 cycles

– Explore probability density function shaping for modeling

– Validate data processing output with ground truth videos

• AI Controller Design (July 2022 – August 2022)

• Real-time implementation (September 2022 – Jan 2023)

Any proposed future work is subject to change based on funding levels.
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8. Summary 

• Accomplishments

– Completed AI-based modeling for all the 34 intersections along Nimitz Highway and 
Ala Moana Boulevard arterial with a <10% modeling error as expected with >95% 
confidence interval.

– Completed optimal and adaptive controller design and preliminary VISSM testing with 
> 30% delay reduction and 10% fuel savings

– Produced 5 publications and received 1 best paper award

• Review Responses

– There was no review comments due to the late start of the project last year

Thank you for 
your attention


